A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form

نویسندگان

  • Michael W. Berry
  • Jack J. Dongarra
  • Youngbae Kim
چکیده

In this paper, we present an algorithm for the reduction to block upper-Hessenberg form which can be used to solve the nonsymmetric eigenvalue problem on message-passing multicomputers. On such multicomputers, a nonsymmetric matrix can be distributed across processing nodes logically configured into a two-dimensional mesh using the block-cyclic data distribution. Based on the matrix partitioning and mapping, the algorithm employs both Householder reflectors and Givens rotations within each reduction step. We analyze the arithmetic and communication complexities and describe the implementation details of the algorithm on message-passing multicomputers. We discuss two different implementations synchronous and asynchronous and present performance results on the Intel iPSC/860 and DELTA. We conclude with an evaluation of the algorithm’s communication cost, and suggest areas for further improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Reduction of a Block Hessenberg-Triangular Matrix Pair to Hessenberg-Triangular Form—Algorithm Design and Performance Results

The design, implementation and performance of a parallel algorithm for reduction of a matrix pair in block upper Hessenberg-Triangular form (Hr, T ) to upper Hessenberg-triangular form (H, T ) is presented. This reduction is the second stage in a two-stage reduction of a regular matrix pair (A, B) to upper Hessenberg-Triangular from. The desired upper Hessenberg-triangular form is computed usin...

متن کامل

Blocked Algorithms for Reduction of a Regular Matrix Pair to Generalized Schur Form

This contribution considers the problem of transforming a regular matrix pair (A;B) to generalized Schur form. The focus is on blocked algorithms for the reduction process that typically includes two major steps. The rst is a two-stage reduction of a regular matrix pair (A;B) to condensed form (H;T ) using orthogonal transformations Q and Z such that H = QAZ is upper Hessenberg and T = QBZ is u...

متن کامل

Reduction of a Regular Matrix Pair (A, B) to Block Hessenberg Triangular Form

An algorithm for reduction of a regular matrix pair (A; B) to block Hessenberg-triangular form is presented. This condensed form Q T (A; B)Z = (H; T), where H and T are block upper Hessenberg and upper triangular, respectively, and Q and Z orthogonal, may serve as a rst step in the solution of the generalized eigenvalue problem Ax = Bx. It is shown how an elementwise algorithm can be reorganize...

متن کامل

Parallel Reduction from Block Hessenberg to Hessenberg using MPI

In many scientific applications, eigenvalues of a matrix have to be computed. By first reducing a matrix from fully dense to Hessenberg form, eigenvalue computations with the QR algorithm become more efficient. Previous work on shared memory architectures has shown that the Hessenberg reduction is in some cases most efficient when performed in two stages: First reduce the matrix to block Hessen...

متن کامل

Parallel Two-Stage Hessenberg Reduction using Tile Algorithms for Multicore Architectures

This paper describes a parallel Hessenberg reduction in the context of multicore architectures using tile algorithms. The Hessenberg reduction is very often used as a pre-processing step in solving dense linear algebra problems, such as the standard eigenvalue problem. Although expensive, orthogonal transformations are accepted techniques and commonly used for this reduction because they guaran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Parallel Computing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1995